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Abstract
The Casimir pressure is calculated between parallel metal plates, containing
the materials Au, Cu or Al. Our motivation for making this calculation is the
need of comparing theoretical predictions, based on the Lifshitz formula, with
experiments that are becoming gradually more accurate. In particular, the
finite-temperature correction is considered, in view of the recent discussion
in the literature on this point. A special attention is given to the case where
the difference between the Casimir pressures at two different temperatures,
T = 300 K and T = 350 K, is involved. This seems to be a case that will be
experimentally attainable in the near future, and it will be a critical test of the
temperature correction.

PACS numbers: 03.70.+k, 12.20.−m, 42.50.Pq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Casimir effect [1] has in recent years attracted a great deal of interest (for recent reviews,
see [2–5]). The advent of accurate experiments has accentuated the need of performing detailed
calculations of the Casimir forces, based upon realistic input values for the permittivities in
the (assumed homogeneous) materials. In the case of two semi-infinite media separated by
a gap a—the standard set-up in the Casimir context—the formula in question is that due to
Lifshitz [6]. In the case of a micrometre-sized sphere above a plane substrate—a case that is
tractable via use of the proximity force approximation when the spherical surface is weakly
curved [7]—the experimental accuracy is claimed in the literature to be on the 1% level. We
shall not give here an overview of recent experiments; we will return to some examples below.
The reader may instead consult recent reviews: a detailed exposition on the experiments up to
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Figure 1. Parallel plate geometry. The two surfaces are located at z = 0 and z = a.

2001 is given in Bordag et al [4], a survey of the developments in the last 4 years is given by
Milton [2], section 3.6, and the works of the Purdue group are presented by Decca et al [8].
(A brief survey of the experiments is also given in the note [9].)

We shall consider the simple set-up shown in figure 1. There are two metallic semi-infinite
media of permittivities ε1 and ε3, with a dielectric medium of permittivity ε2 in between. For
simplicity we assume that region 2 is vacuum (air), so that ε2 = 1. The surfaces are assumed
to be perfectly flat, of infinite extension, and the media are assumed non-magnetic. Our
intention is to work out values for the attractive Casimir surface pressure F(a) versus gap
width a for similar and dissimilar metals, when the temperature T is finite. Of main interest
will be the temperature correction, in view of the conflicting opinions in the literature on this
point. We will follow the same calculational strategy as in our earlier recent papers on these
issues [10–12].

We shall consider three different metals: gold, copper and aluminium. For these metals
we have access to excellent numerical data for the permittivities (courtesy of Astrid Lambrecht
and Serge Reynaud). We know how ε(iζ ) varies with the imaginary frequency ζ over
seven decades, ζ ∈ [1011, 1018] rad s−1, at room temperature. For frequencies up to about
1.5 × 1015 rad s−1 the data are nicely reproduced by the Drude dispersion relation

ε(iζ ) = 1 +
ω2

p

ζ(ζ + ν)
, (1)

where ωp is the plasma frequency and ν is the relaxation frequency. For the three metals
mentioned we have [13, 14]

ωp = 9.0 eV, ν = 35 meV Au
ωp = 9.05 eV, ν = 30 meV Cu
ωp = 11.5 eV, ν = 50 meV Al

(2)

(note that 1 eV = 1.519 × 1015 rad s−1). Using these data we can calculate the Casimir
pressures to an accuracy better than 1%.

We shall consider three different temperatures. First, it is of interest to work out explicitly
the zero-temperature Casimir pressure. When discussing finite-temperature corrections one
should first know what is meant by the T = 0 reference level. This issue is not trivial, since
most of the T = 0 theoretical predictions have been referred to the idealized case where ε = ∞
from the outset. As discussed extensively in earlier works [2, 10–12], the correct model in
an idealized setting is the modified ideal metal (MIM) model, which assumes unit reflection
coefficients for all but the transverse electric (TE) zero-frequency mode. Our argument rests
upon the condition that the relaxation frequency ν(0) at zero frequency remains different from
zero. Here, as in [11], we will calculate the T ≈ 0 pressure numerically, inserting real data
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for ε(iζ ). We shall choose T = 1 K as the lower temperature limit. It turns out that this
limit is stable numerically, and numerical trials around this limit indicate that it describes the
zero-temperature case with good accuracy. This method, although numerically demanding, is
physically better than adopting the simple idealized metal model.

The second temperature of interest is room temperature, T = 300 K. Recognizing that
the difference between the Casimir pressures at T = 0 and T = 300 K will hardly become
a measurable quantity, we shall instead consider, as our third chosen temperature, T =
350 K. The difference between the Casimir pressures at the two last-mentioned temperatures
will perhaps soon become accessible in experiment. We shall therefore focus upon calculating
how this difference varies with a.

The present calculations, involving three different metals and three different temperatures,
are of interest for comparison of the future experimental work on the finite-temperature Casimir
force. To our knowledge, these are the first calculated results for unequal metal surfaces at
finite temperature. We ought here to mention that the first correct calculations of finite-
temperature Casimir forces between two equal gold, copper or aluminium metal half planes
were made by Boström and Sernelius [15, 16]; these authors also considered two thin equal
metal films of gold, silver, copper, beryllium or tungsten [17, 18]. The calculations by Boström
and Sernelius showed that the retarded van der Waals or Casimir interaction in more or less
the same separation range (around 1 µm) as considered in the present paper depends on the
choice of material for two equal metal surfaces. The present work is thus a step beyond this
in that it considers unequal metal surfaces.

It has repeatedly been pointed out by some authors that our use of the Drude dispersion
relation runs into conflict with the Nernst theorem in thermodynamics, cf for instance, [19, 20].
We have shown earlier, however, that this is not the case [10, 11]. Thus, these thermodynamic
issues will not be given further attention here.

In the next section, we present the general formalism, for similar as well as for dissimilar
media, and then give in section 3 the results of our calculations in several diagrams. With
respect to the temperature correction, we restrict ourselves in this section to the difference
between T = 0 and T = 300 K predictions. In section 4 we focus our attention on the
difference between the mentioned 300 K and 350 K cases.

In the main text, we put h̄ = c = kB = 1.

2. Basic formalism

We consider first the case of two identical media, ε1 = ε3 ≡ ε. With the same notation as in
[10, 11] we can write the Casimir pressure as

F = − 1

πβa3

∞∑
m=0

′ ∫ ∞

mγ

y2 dy

[
Am e−2y

1 − Am e−2y
+

Bm e−2y

1 − Bm e−2y

]
, (3)

where

Am =
(

εp − s

εp + s

)2

, Bm =
(

s − p

s + p

)2

, s =
√

ε − 1 + p2, p = q

ζm

,

(4)
y = qa, q =

√
k2
⊥ + ζ 2

m, ζm = 2πm

β
, γ = 2πa

β
.

The prime on the summation sign means that the m = 0 term is counted with half weight;
β = 1/T is the inverse temperature. The minus sign in equation (3) means that the force is
attractive.
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(The following point should be noted. Assume that a plane wave is incident from the left
medium (z < 0) towards the boundary at z = 0. For the TM mode, the ratio between the
reflected wave amplitude RTM and the incident wave amplitude ATM is equal to the square
root of the coefficient Am, after the real frequency ω has been replaced with the imaginary
frequency ζ (ω = iζ ), corresponding to the surface mode:

RTM

ATM
=

√
Am, (5)

cf appendix B in [10]. Analogously, for the TE mode:

RTE

ATE
=

√
Bm. (6)

Generalization to the case of dissimilar media leads to the following expression:

F = − 1

πβa3

∞∑
m=0

′ ∫ ∞

mγ

y2 dy

[
�TM

1 �TM
2 e−2y

1 − �TM
1 �TM

2 e−2y
+

�TE
1 �TE

2 e−2y

1 − �TE
1 �TE

2 e−2y

]
, (7)

where

�TE
1 = s1 − p

s1 + p
, �TE

2 = s3 − p

s3 + p
,

(8)
�TM

1 = ε1p − s1

ε1p + s1
, �TM

2 = ε3p − s3

ε3p + s3
.

Again, if the two media are equal we have �1 = �2 for each of the modes, so that

�TM
1 �TM

2 → Am, �TE
1 �TE

2 → Bm, (9)

and formula (3) is recovered.
We calculate expression (7) by means of MATLAB. The zero-frequency case m → 0 may

be treated separately by analytical methods, at least if we are considering an idealized model
for the metal, because in this limit there is an interplay with the other limit ε → ∞ in the
expressions for the coefficients. We have in this case p → ∞, si → p for i = 1, 3, implying
that

�TE
i → 0, �TM

i → εi − 1

εi + 1
≡ �i. (10)

Then, the m = 0 contribution can be written as

F0 = 1

πβa3
I0, (11)

where

I0 = −1

2

∫ ∞

0
y2 dy

� e−2y

1 − � e−2y
= −1

8
polylog(3,�), (12)

the polylog function being defined as polylog(x, z) = ∑∞
n=1 znn−x . We here assume that

� ≡ �1�2 � 1. (For � > 1 the integral is undefined.) Since εi � 1 for a metal near ζ = 0
we have that � ≈ 1, but still less than unity, so we can let I0 → − 1

8 polylog(3, 1) = − 1
8ζ(3),

where ζ(x) is the Riemann zeta function. The numerical value of I0 used in our calculations
was I0 = −0.150 257 1129.

The first equation in (10) means that there is no contribution to the Casimir force from
the m = 0 TE mode, at finite temperatures. (At T = 0 the m = 0 effect vanishes, as
the discrete Matsubara sum is replaced by an integral over frequencies.) This behaviour is a
consequence of the Drude relation at low frequencies. The same behaviour can also be seen by
use of quantum statistical methods, as was demonstrated for the case of spherical geometry
in [21, 22].
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Figure 2. The integrand of equation (7) versus y = qa for a = 50 nm, m = 45 000 and T =
1 K. The materials are Al and Cu. The left-end point of the curve corresponds to the lower limit
y = mγ of the integral in (3).

3. Numerical calculations: results

Since expression (7) is complicated, with an upper limit y = qa = ∞ for the integral, it is
useful first to get information about how the integrand varies with respect to y in typical cases.
The expression is most demanding numerically for low temperatures and small gap widths.

Figure 2 shows how the integrand varies with respect to y for a very high Matsubara
number, m = 45 000, when a = 50 nm and T = 1 K. The configuration is one aluminium and
one copper plate. It is seen that when y becomes larger than about 10, the contribution to the
integral decreases rapidly. At y = 50 the value is only 10−45. Figure 3 shows for comparison
how the integrand varies with y at the same temperature when the frequency is at the lowest
non-vanishing value, m = 1, for a = 50 nm and a = 3000 nm. The behaviour is seen to be
quite similar to that above; for instance, when y = 50 the integrand becomes approximatively
10−40. For different plate combinations, we get approximately the same behaviour. For
high temperatures, the same conclusion can be drawn. In all, we found it sufficient in our
computations to adopt the value

ymax = 50 + mγ (13)

as general cutoff. (It is useful to note that γ = 2744(aT ), when a is given in metres and T in
degree kelvin.)

Numerically, we used a method of higher order recursive adaptive quadrature. This
method approximates the value of the integral with a chosen tolerance of 10−10.

Next, it is useful to show the variations of ε(iζ ) graphically for the three metals mentioned,
together with information about the frequency region actually used in the calculations.
Figure 4 shows this for the case of T = 300 K. The data extend over seven decades.
The vertical lines show that the important frequency region in this case lies between 2 ×
1014 rad s−1 and 5.5 × 1016 rad s−1. We also show the corresponding values of m = ζmβ/2π

(in non-dimensional units). The range of m is [1, 220]. For comparison, the theoretical
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Figure 3. Same as figure 2, but with a = {50, 3000} nm, and m = 1.

10
12

10
13

10
14

10
15

10
16

10
17

10
18

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

ζm (rad/s)

ε(
iζ

m
)

0.004 0.04 0.4 1 4 40 400 4000

m = ζmh/(4π2kBT)    (T=300K)

Au

Al

Cu

Drude

Plasma

Figure 4. Numerical permittivity data for Al, Au and Cu (courtesy of Astrid Lambrecht and
Serge Reynaud). Vertical lines show the frequency region that we used in the m summation at
T = 300 K. Predictions from the Drude and the plasma dispersion relations are also shown in the
case of Au. The top axis gives the values of the Matsubara number m.

predictions are shown for the case of gold, both when using the Drude relation (1) and when
using the plasma dispersion relation

ε(iζ ) = 1 +
ω2

p

ζ 2
. (14)
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Figure 5. Same room temperature data as in figure 4, but the vertical lines show the frequency
region used in the calculations at T = 1 K. Drude and plasma dispersion relations shown for Au
as before.

We see that for ζ < 1.5 × 1015 rad s−1 the Drude curve fits the data nicely, but for ζ > 2 ×
1015 rad s−1 it gives too low values for ε. The used frequency region corresponds to the area
where the Drude prediction and the plasma prediction are approximately equal, and also to
the area where the data for aluminium differ the most from the data for gold and copper.

Figure 5 shows the analogous situation when T = 1 K. It now becomes necessary to use
a much larger frequency region, from 7 × 1011 rad s−1 to 3.3 × 1016 rad s−1, corresponding
to about 80% of the entire data set. The Matsubara number region is m ∈ [1, 40 000]. The
physical reason for this behaviour is, as always, that the case of low temperatures implies that
the frequencies are very closely spaced.

3.1. Room-temperature Casimir force

We shall in this subsection assume that T = 300 K. The force, expression (7), is always
negative, but it is convenient to represent it graphically in terms of the modulus |F(a)|. Since
in the parallel plate experiment of Bressi et al [24] one was able to control the gap width down to
50 nm, we choose a = 50 nm as our lower limit. As upper limit we choose a = 3 µm. To better
visualize the results graphically, we divide all data sets into two groups, a ∈ [50, 200] nm
and a ∈ [200, 3000] nm. As mentioned earlier, the plates are assumed infinite, and all
roughness corrections are ignored.

Figures 6 and 7 show how the Casimir pressure varies with a, for various combinations of
metal plates. The force between two gold plates was computed earlier in [12], but is included
here for comparison. The differences between the various combinations of the materials are
seen to be small, and they diminish with increasing gap widths. The largest force always occurs
for two aluminium plates. This may be called group I. The combinations aluminium–gold
and aluminium–copper yield a somewhat smaller force (group II), and the last combinations
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Figure 6. The Casimir pressure for various combinations of metal plates versus gap width
a ∈ [50, 200] nm when T = 300 K.
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Figure 7. Same as figure 6, but with a ∈ [200, 3000] nm when T = 300 K.

Au–Au, Au–Cu and Cu–Cu result in the weakest set (group III). When a increases from small
to large values, the internal order in strength between the materials in groups II and III is
interchanged.

3.2. Room-temperature correction, compared to T = 0

We now turn to the finite-temperature correction in the Casimir force. As mentioned above, it
is then important to make clear what we mean with the zero-temperature force. Numerically,



Calculation of the Casimir force at finite temperature 9583

50 100 150 200
0

20

40

60

80

100

120

140

160

180

|F1| – |F300| as a function of a.

∆F
(m

P
a)

a(nm)

Al−Al
Al−Cu
Al−Au
Cu−Cu
Au−Cu
Au−Au

Figure 8. The difference between the Casimir pressures at T = 1 K and T = 300 K,
equation (15), versus gap width a for a ∈ [50, 200] nm.

we have seen that it becomes satisfactory to represent the latter case by the choice T = 1 K,
the difference between T = 0 and T = 1 K being negligible.

Since the data for ε(iζ ) are measured at room temperature, the natural question becomes:
can we use these data also at very low temperatures? This issue has been discussed earlier, in
[11, 12, 25], with the conclusion that the temperature dependence appears not to influence the
dispersion relation in a way that changes the Casimir force significantly. This implies that we
can insert the same Lambrecht–Reynaud data as before, and also assume the same values for
ωp and ν (cf equation (2)).

The calculated results from the T = 1 K case are hardly distinguishable from the T =
300 K case when plotted in the same figure. Therefore, it is better to show the calculated
finite-temperature differences. In figures 8 and 9 we show the difference between the Casimir
pressures at T = 1 K and T = 300 K,

�F = |F1| − |F300|, (15)

versus a in the range from 50 nm to 1700 nm. As the graphs for the various combinations of
metals become indistinguishable for a > 0.4 µm and approach zero when a becomes larger
than 1.7 µm, we have omitted the region from 1.7 µm to 3 µm in figure 9.

An important property seen from the curves is that �F is positive. That means, the
force is weaker at room temperature than at T = 0. This is the same effect as we have
pointed out earlier, in connection with identical materials in the plates [10–12]; see also
[2, 23]. The behaviour is a direct consequence of the Lifshitz formula in combination with
realistic permittivity data for the materials, the latter being, as we have seen, in agreement
with the Drude relation at frequencies ζ < 1.5 × 1015 rad s−1. Our results for the temperature
dependence are in contrast to those obtained by use of the plasma dispersion relation; in that
case, the deviation of the force is positive instead of negative, and is moreover very small
[14, 26, 27].
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Figure 9. Same as figure 8, for the interval a ∈ [200, 1700] nm.

To get an overview of the magnitudes of the temperature correction, let us give some
examples:

(1) For small gap widths, the correction is relatively small. Thus when a = 100 nm, the
Casimir pressure is 6.105 Pa at T = 1 K and 6.061 Pa at T = 300 K, thus giving a room
temperature reduction of 0.72%.

(2) When a = 200 nm, the respective pressures are 510 mPa at 1 K and 500 mPa at 300 K,
giving a 2% reduction.

(3) When a = 500 nm, the pressures are 16.3 mPa and 15.2 mPa, giving a 6.7% reduction.
(4) For large gap widths the percentage corrections become much higher, though the pressures

themselves are much weaker thus making the experimental work more difficult. When
a = 1 µm the respective pressures are 1.12 mPa and 0.96 mPa, giving a 13.9% reduction.

It is of interest to compare the above findings with figure 5 in [10]. That figure shows,
in the case of Au–Au, how the Casimir pressure varies with aT when the media are assumed
non-dispersive. The width is assumed to be a = 1 µm. The temperature T = 300 K
corresponds to aT = 0.131. One sees that in this case the agreement with our result above,
F = 0.96 mPa, is reasonably good, if we put ε = 3000. The broken line in figure 5 in [10]
gives the result when the modified ideal metal model is used in the calculation. As already
mentioned, this is an idealized model, which assumes unit reflection coefficients for all but the
TE zero mode:

A0 = 1, B0 = 0, Am = Bm = 1 for m � 1. (16)

The MIM model corresponds to ε = ∞. Putting aT = 0.131 in the mentioned figure 5 we
see that F ≈ 1.1 mPa. There is thus more than a 10% overprediction of the Casimir pressure
following from the MIM model, at a = 1 µm and T = 300 K, in comparison with our result
0.96 mPa above.

We recall again that at T = 0 there is no distinction between a MIM model and an ‘ideal
metal’ model (IM), for which Am = Bm = 1 for all m � 0. In the mentioned figure 5, setting
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Figure 10. The difference between the Casimir pressures at T1 = 300 K and T2 = 350 K,
equation (17), versus a for a ∈ [50, 200] nm.

aT = 0, we obtain for an ideal metal F ≈ 1.3 mPa at a = 1 µm, which is considerably larger
than the value 1.12 mPa calculated above for T = 0.

4. A temperature correction of experimental interest

The calculated temperature correction at T = 300 K as compared with the T = 0 case,
although of fundamental interest, will be difficult to measure in practice. For practical
purposes it can thus be better to focus on temperatures that are more realistic in the laboratory.
In the following, as an example, we calculate the difference between the Casimir pressures at
two temperatures T1 = 300 K and T2 = 350 K, and let from now on �F mean the pressure
difference:

�F = |F300| − |F350|. (17)

This idea of testing the Casimir force seems to go back to Chen et al [26], and was elaborated
upon also in [12].

Figures 10 and 11 show how the quantity (17) varies with a in the interval a ∈
[50, 1400] nm, for the same combinations of materials as before. Again, the differences
between the materials are seen to be small. Taking Au–Au as an example, we see that
�F = 2.0 mPa when a = 200 nm. It would perhaps be possible to measure a quantity
like this. The experimental advantage we see of this kind of experiment is that only force
differences are involved, for a given value of the gap width. Then there will be no need of
measuring the absolute Casimir pressure itself, to an extreme accuracy. (Thermal expansion
effects, of course, will have to be taken into account.)

Finally, figure 12 shows how the relative magnitude of the difference Casimir pressure,
�F/F300, varies for the same two temperatures. We see, in accordance with the behaviour
above, that the relative temperature correction is the greatest when a is large. When
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Figure 12. The relative change of the Casimir pressure, between T1 = 300 K and T2 = 350 K.

a = 1.75 µm, the correction takes its maximum value, about 4%. Again, the experimental
problem at large distances is that the forces themselves are so small.

5. Summary

For similar and dissimilar plates, including the metals gold, copper and aluminium, we have
made accurate calculations of the Casimir pressure and have shown the results graphically.
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Basic elements in our calculations are the Lifshitz formula, cf equations (3) and (7),
together with realistic room-temperature values of the permittivities ε(iζ ). For frequencies
ζ < 1.5 × 1015 rad s−1, cf equations (1) and (2), the Drude dispersion relation is followed
with great accuracy.

We show the results at three chosen temperatures: (i) at T = 1 K, representing the T = 0
case with good accuracy; (ii) at T = 300 K and (iii) at T = 350 K. The low-temperature case
is calculated numerically, without involving the modified ideal metal (MIM) model [10].

It turns out that the differences between the Casimir pressures for the metals investigated
here are small. From figures 6 and 10, for instance, it is seen that it is the case of Al–Al
surfaces that give the strongest forces.

The most promising option for measuring the Casimir temperature correction in practice
seems to be to measure the pressure difference between two practically accessible temperatures
in the laboratory. As figure 12 shows, the relative change of the Casimir pressure between
the temperatures 300 K and 350 K is about 4% when a = 1.75 µm. The practical problem
here is that the forces themselves are so small. For lower values of a the forces increase in
magnitude, but the relative temperature corrections then become smaller.
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[8] Decca R S, López D, Fischbach E, Klimchitskaya G L, Krause D E and Mostepanenko V M 2005 Ann. Phys.,

NY 318 37
[9] Brevik I, Dahl E K and Myhr G O 2005 J. Phys. A: Math. Gen. 38 L49

[10] Høye J S, Brevik I, Aarseth J B and Milton K A 2003 Phys. Rev. E 67 056116
[11] Brevik I, Aarseth J B, Høye J S and Milton K A 2005 Phys. Rev. E 71 056101
[12] Brevik I, Aarseth J B, Høye J S and Milton K A 2004 Proc. 6th Workshop on Quantum Field Theory Under

the Influence of External Conditions ed K A Milton (Paramus, NJ: Rinton Press) p 54 (Preprint quant-
ph/0311094)

[13] Lambrecht A and Reynaud S 2000 Eur. Phys. J. D 8 309
[14] Decca R S, Fishbach E, Klimchitskaya G L, Krause D E, López D and Mostepanenko V M 2003 Phys. Rev. D
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and Romero C 2005 Preprint quant-ph/0503134
[20] Bezerra V B, Klimchitskaya G L, Mostepanenko V M and Romero C 2004 Phys. Rev. A 69 022119
[21] Høye J S, Brevik I and Aarseth J B 2001 Phys. Rev. E 63 051101
[22] Brevik I, Aarseth J B and Høye J S 2002 Phys. Rev. E 66 026119



9588 V S Bentsen et al

[23] Sernelius Bo E and Boström M 2004 Proc. 6th Workshop on Quantum Field Theory Under the Influence of
External Conditions ed K A Milton (Paramus, NJ: Rinton Press) p 82

[24] Bressi G, Carugno G, Onofrio R and Ruoso G 2002 Phys. Rev. Lett. 88 041804
[25] Boström M and Sernelius B E 2004 Physica A 339 53
[26] Chen F, Klimchitskaya G L, Mohideen U and Mostepanenko V M 2003 Phys. Rev. Lett. 90 160404
[27] Chen F, Klimchitskaya G L, Mohideen U and Mostepanenko V M 2004 Phys. Rev. A 69 022117


	1. Introduction
	2. Basic formalism
	3. Numerical calculations: results
	3.1. Room-temperature Casimir force
	3.2. Room

	4. A temperature correction of experimental interest
	5. Summary
	Acknowledgments
	References

